The Hydrogen Atom

Spherical Coordinates

-The potential (central force)
$V(r)$ depends on the distance r between the proton and electron.

Transform to spherical polar coordinates because of the radial symmetry.

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& r=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

$\theta=\cos ^{-1} \frac{z}{r}$ (Polar angle)
$\phi=\tan ^{-1} \frac{y}{x}$ (Azimuthal angle)

Solution of the Radial Equation

$$
\begin{aligned}
& \Psi(r, \theta, \phi)=R(r) Y(\theta, \phi) \\
& \hat{H}=-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]+V(r) \\
& V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \\
& \hat{H} R(r) Y(\theta, \phi)=E R(r) Y(\theta, \phi) \\
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] R Y+V(r) R Y=E R Y
\end{aligned}
$$

Dividing throughout by RY
$-\frac{\hbar^{2}}{2 \mu} \frac{1}{R} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}-\frac{1}{Y} \frac{\hbar^{2}}{2 \mu r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] Y+V(r)=E$
$-\frac{\hbar^{2}}{2 \mu} \frac{1}{R} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}-\frac{1}{Y} \frac{\hbar^{2}}{2 \mu r^{2}} \Lambda^{2} Y+V(r)=E$
$-\frac{\hbar^{2}}{2 \mu r^{2}} \Lambda^{2} Y=\frac{\hbar^{2}}{2 \mu r^{2}} l(l+1) Y$
$-\frac{\hbar^{2}}{2 \mu} \frac{1}{R} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}+\frac{\hbar^{2}}{2 \mu r^{2}} l(l+1)+V(r)=E$
$-\frac{\hbar^{2}}{2 \mu} \frac{1}{R} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}+\left[\frac{\hbar^{2}}{2 \mu r^{2}} l(l+1)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}\right]=E$

$$
\begin{aligned}
& V_{e f f}=\frac{\hbar^{2}}{2 \mu r^{2}} l(l+1)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \\
& -\frac{\hbar^{2}}{2 \mu} \frac{1}{R} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}+V_{\text {eff }}=E
\end{aligned}
$$

$$
-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial R}{\partial r}+V_{e f f} R=E R
$$

$$
\frac{\partial^{2} R}{\partial r^{2}}+\frac{2}{r} \frac{\partial R}{\partial r}+\frac{2 \mu}{\hbar^{2}}\left(E-V_{e f f}\right) R=0
$$

$$
\begin{aligned}
& \text { Define } \\
& u=r R \\
& \frac{1}{r} \frac{\partial^{2} u}{\partial r^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-V_{e f f}\right) R=0 \\
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-V_{e f f}\right) r R=0 \\
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-V_{e f f}\right) u=0
\end{aligned}
$$

The last equation is called the radial equation

$$
\begin{aligned}
& E_{n}=-\left(\frac{Z^{2} \mu e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}\right) \frac{1}{n^{2}} \quad n=1,2, \ldots \\
& \rho=2 Z r / n a_{0} \\
& a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{\mathrm{e}} e^{2}} \quad \text { Bohr's radius }
\end{aligned}
$$

In a precise calculation, the Bohr radius a_{0}, which depends on the mass of the electron, should be replaced by a, in which the reduced mass μ appears instead. Very little error is introduced by using a_{0} in place of a in this and the other equations.

Even for ${ }^{1} \mathrm{H}, \mathrm{a}=1.0005 \mathrm{a}_{0}$

The effective potential, $V_{\text {eff }}$

$$
V_{\mathrm{eff}}=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}
$$

Bound States

t

Shows the potential-energy curve and some of the allowed energy levels for the hydrogen atom $(Z=1)$.

The crosshatching indicates that all positive energies are allowed

$$
E_{n}=-\left(\frac{Z^{2} \mu e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}\right) \frac{1}{n^{2}} \quad n=1,2, \ldots
$$

(Bound states)

$$
\begin{aligned}
& R_{10}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} 2 \\
& R_{20}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{2 \sqrt{2}}\left(2-\rho_{n}\right) \\
& R_{21}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{2 \sqrt{6}} \rho_{n} \\
& R_{30}(r)=\left(\frac{Z}{a_{0} n}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{3}}\left(6-6 \rho_{n}+\rho_{n}^{2}\right) \\
& R_{31}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{6}}\left(4-\rho_{n}\right) \rho_{n} \\
& R_{32}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{30}} \rho_{n}^{2} \\
& R_{40}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96}\left(24-36 \rho_{n}+12 \rho_{n}^{2}-\rho_{n}^{3}\right) \\
& R_{41}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{32 \sqrt{15}}\left(20-10 \rho_{n}+\rho_{n}^{2}\right) \rho_{n} \\
& R_{42}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96 \sqrt{5}}\left(6-\rho_{n}\right) \rho_{n}^{2} \\
& R_{43}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96 \sqrt{35}} \rho_{n}^{3}
\end{aligned}
$$

$$
R_{n l}(r)=\quad \mathbf{N}_{\mathrm{n}, \mathrm{l}} \rho^{l} L_{n+l}^{2 l+1}(\rho) \mathrm{e}^{-\rho / 2}
$$

Illustration 3.1 Locating nodes

The zeros of the function with $n=3$ and $l=0$ occur where

$$
6-6 \rho+\rho^{2}=0 \quad \text { with } \rho=\left(\frac{2 Z}{3 a_{0}}\right) r
$$

The zeros of this polynomial occur at $\rho=3 \pm \sqrt{ } 3$, which corresponds to $r=(3 \pm \sqrt{ } 3)\left(3 a_{0} / 2 Z\right)$.

Quantum Numbers

-The three quantum numbers:
$-n$: Principal quantum number
$-\ell$: Orbital angular momentum quantum number $-m_{\ell}$:Magnetic (azimuthal) quantum number
-The restrictions for the quantum numbers:

$$
\begin{aligned}
& n=1,2,3,4, \ldots \\
& \ell=0,1,2,3, \ldots, n-1 \\
& m_{\ell}=-\ell,-\ell+1, \ldots, 0,1, \ldots, \ell-1, \ell
\end{aligned}
$$

Spherical Harmonics

Y_{l}^{m} 's are the eigenfunctions to $\hat{H} \psi=E \psi$ for the rigid rotor problem.

$$
\begin{array}{ll}
\left.Y_{0}^{0}=\frac{1}{(4 \pi}\right)^{1 / 2} & Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{\frac{1}{2}}\left(3 \cos ^{2} \theta-1\right) \\
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \theta & Y_{2}^{ \pm 1}=\left(\frac{15}{8 \pi}\right)^{\frac{1}{2}} \sin \theta \cos \theta e^{ \pm i \phi} \\
Y_{1}^{1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{i \phi} & Y_{2}^{ \pm 2}=\left(\frac{15}{32 \pi}\right)^{\frac{1}{2}} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{1}^{-1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{-i \phi}
\end{array}
$$

$$
\begin{aligned}
& R_{10}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} 2 \\
& R_{20}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{2 \sqrt{2}}\left(2-\rho_{n}\right) \\
& R_{21}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{2 \sqrt{6}} \rho_{n} \\
& R_{30}(r)=\left(\frac{Z}{a_{0} n}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{3}}\left(6-6 \rho_{n}+\rho_{n}^{2}\right) \\
& R_{31}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{6}}\left(4-\rho_{n}\right) \rho_{n} \\
& R_{32}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{9 \sqrt{30}} \rho_{n}^{2} \\
& R_{40}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96}\left(24-36 \rho_{n}+12 \rho_{n}^{2}-\rho_{n}^{3}\right) \\
& R_{41}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{32 \sqrt{15}}\left(20-10 \rho_{n}+\rho_{n}^{2}\right) \rho_{n} \\
& R_{42}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96 \sqrt{5}}\left(6-\rho_{n}\right) \rho_{n}^{2} \\
& R_{43}(r)=\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho_{n} / 2} \frac{1}{96 \sqrt{35}} \rho_{n}^{3}
\end{aligned}
$$

Think about how to write the total wavefunction

Done in class!

Total H atom wavefunctions are normalized and orthogonal:

$$
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{\infty} d r r^{2} \psi_{n l m}^{*}(r, \theta, \phi) \psi_{n^{\prime} l^{\prime} m^{\prime}}^{*}(r, \theta, \phi)=\delta_{n n^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

Volume element in spherical polar coordinates

Radial Probability Distribution Function

- The radial
 gives the probability that an electron will be found anywhere between two concentric spheres with radii that differ by $d r$

FIGURE 6.9 Plots of the radial distribution function $\left[R_{n \prime}(r)\right]^{2} r^{2}$ for the hydrogen atom.

H atom S orbitals

H -atom spectrum

$$
\begin{aligned}
& E_{n}=-\left(\frac{\mu e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}\right) \frac{Z^{2}}{n^{2}} \\
& E_{n}=-h c R_{H} \frac{Z^{2}}{n^{2}} \\
& R_{H}=\frac{\mu e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}
\end{aligned}
$$

(for any hydrogen-like atom)

$$
\text { (expressing } R_{\mathrm{H}} \text { in } \mathrm{cm}^{-1} \text {) }
$$

(expressing R_{H} in cm^{-1})
(R_{H} is the Rydberg constant)

If one considers the reduced mass of electron and proton, $R_{\mathrm{H}}=109677 \mathrm{~cm}^{-1}$

If one considers the mass of electron only ($\mu=\mathrm{m}_{\mathrm{e}}$), $R_{\mathrm{H}}=109737 \mathrm{~cm}^{-1}$

For H -atom, $\mathrm{Z}=1$

$$
\begin{aligned}
& E_{n}=-\frac{13.6}{n^{2}} \quad \mathrm{eV} \quad \text { (For H-atom, } \mathrm{Z}=1 \text {) } \\
& E_{n}=-13.6 \frac{\mathrm{Z}^{2}}{n^{2}} \mathrm{eV} \quad \underset{\substack{(\text { For Hydrogen-like atom, } \\
\mathrm{Z} \neq 1)}}{ }
\end{aligned}
$$

